Thursday, September 1, 2011

Ten Reasons Why Nuclear Energy Is Necessary For Another 50-Years

Today I attended an interesting presentation on the merits of ocean thermal energy conversion (OTEC) and fusion with heavy ions (HIF). Fusion is the “miracle” no-radiation, no noxious waste energy concept that for the past 50 years it’s been “20-years in the future.” There are no fusion power plants in existence, in part because of the giant size they require, and the giant budget that comes with it: $50 Billion for one installation which, in turn, would be enough to supply all of California with fuels and electricity. But $50 Billion for the first-of-its-kind installation is a proposition that no private company or politician has put forth.

What we have available today is the much more scalable and affordable fission process of nuclear reactors. So I summarized below ten key reasons why nuclear energy is necessary for areas that anticipate growth in one million people increments. Many cities in Asia and Africa fit this growth profile.

1) Growth: World population was 3 Billion in 1960, 6 Billion in 1999 and expected to be 9 Billion in 2046. Population growth and improving standard of living globally demand increasing amounts of energy. Energy production must roughly double in the next 30 years to accommodate demand.

2) Fossil fuel depletion: Fossil fuels are being depleted, are not renewable and carbon taxes or pollution limits incentivize low carbon power production alternatives, one of which is nuclear.

3) Plant aging: The post WWII rapid growth of 1st world countries was facilitated in large part by electric power plants of various types and sizes. Many of them are past 50 years of age and need replacement.

4) China alone is growing very fast and a major bottleneck of its growth may become the supply of electric power. Mopeds are electric in its large cities and BYD and CODA are selling full-featured electric vehicles.*

5) Uranium as a fuel has advantages: It is relatively abundant, it does not cost much, not a lot of it is needed to fuel nuclear reactors, and supply comes from stable countries such as Australia and Canada. It is only mildly radioactive and its alpha radiation does not penetrate the skin. Uranium metal is commonly handled with gloves as a sufficient precaution.

6) Modern nuclear power plants provide large amount of power, typically over 1 GW which is 1,000 megawatts. One 1.5 GW plant can cover the needs of a 1st world city of about one million population. Its impact on land and other earth resources is very small compared to many other clean energy sources such as photovoltaic and wind.

7) Familiarity: By 2010 there were 440 nuclear power plants in 31 countries supplying about 15% of the world electric power. Also, there are hundreds of naval vessels with compact nuclear reactors.

8) Vinod Koshla told The Economist that Earth is on an unsustainable energy trajectory and the development of affordable new energy is essential for the billions of peoples on the planet and particularly in fast growing China, India, Indonesia and Nigeria.** Until a feasible and affordable breakthrough is achieved in the energy field, nuclear energy is a major option for large populations because of its cost per MW, safety and near zero carbon footprint.

9) Normal safety: Current nuclear plant designs have many more safety features than the 1950s-era power plants that exhibited critical problems in Pennsylvania, Russia and Japan. Here is an example of a late 1980s nuclear reactor that shut down recently because it auto-detected some equipment failure.

10) Catastrophe scenario: The Fukushima, Japan Daiischi nuclear power plant failure is a great example of resilience. Whereas nature’s force and infrastructure failures in the 9 R earthquake on March 11, 2011 (Tōhoku earthquake) claimed over 30,000 lives, this major nuclear power plant accident had no fatalities. The plant designed with 1950s technology and built for an 8 R earthquake actually withstood an earthquake that was 10 times stronger. Flood water from the powerful tsunami jumped over the 25 ft. protective sea-walls and drowned the external diesel generators used to circulate water and cool the reactors. Because of the surrounding catastrophe, nobody was able to fix this external power system. After the 8-hour backup batteries ran out, cooling stopped and partial meltdown commenced. The September 1, 2011 press release of TEPCO Power Company reads in part: “By bringing the reactors and spent fuel pools to a stable cooling condition and mitigating the release of radioactive materials, we will make every effort to enable evacuees to return to their homes and for all citizens to be able to secure a sound life.”

Power is the key ingredient for prosperity. Without adequate and affordable power, our life-style, health and well-being cannot be maintained. Power fundamentally affects our basic needs such as water distribution, sanitation, food production and transportation for covering essential needs. Once it is understood that every 750,000 population requires approximately 1,000 MW per day, the production of affordable energy by existing solar and wind technologies appears only on the lists of severely math (and reality) incompetent individuals.

Unfortunately “environmentalists” and self-appointed “public protectors” are most effective in blocking nuclear power plants for communities with the best engineering, strict safety standards and political stability (e.g., Germany, Japan and U.S. locales.) At the same time, gigawatts of nuclear power are shifting to less secure environs, such as developing ex-soviet and ex-communist countries. This may be an unwelcome transfer of risk for the planet as a whole.

(*) China is one of a few nations with no apparent hesitation for the deployment of nuclear energy. I show a sample collage below. The approximately 10 million population city of Harbin in northern China has two large nuclear reactors as part of the cityscape. They were within a 30 minute walk from my hotel where I took the picture shown below in late August 2011. A week earlier I was sitting on the left side of the bus from Nanjing to Shanghai, a 160 mile trip. I saw and photographed three large nuclear power plants shown at the bottom of the picture; one every 50 miles!

(**) Add the U.S. (~500 million) and the Philippines (~200 million) to those four and their combined population projection for 2100 reaches 4 Billion!


Cris Eberle said...

Dear Prof. Prevedouros,

I was very interested in your blog about nuclear power, and I was excited to see someone expressing the necessity of fission energy. I would be interested in learning more about the possibility of nuclear power for Hawaii. Thanks you for your post!

I just moved to Oahu and I am a semi-retired nuclear engineer (Ph.D Purdue, Nuclear Engineering) with a career spaning 30 yrs. of research and development in the nuclear industry

Panos Prevedouros said...

Cris, please search my blog to find a couple older articles on your question. As mayor candidate in 2010 I proposed a floating structure (e.g., a large decommissioned and refurbished Navy vessel) 15 miles offshore Oahu with a couple reactors for 150-500 MW of power.