Sunday, August 23, 2009

The National Debate on High Speed Rail Reveals Pitfalls of Old Steel-on-Steel Rail Technology

The International Maglev Board has published an series of short and informative articles of the advantages of magnetically levitated train and questions USA’s inertia and conservatism in thinking about steel-on-steel medium speed rail. They begin by asking: Why is America embarking on a high-speed rail initiative that is so prejudiced against maglev and so weighted in favor of 45-year-old “proven” technology? With minor edits I include below several important highlights of their positions that point to the direction that America is poised to make a bad choice. My own comments are in [brackets].

For the record, maglev is not traditional train technology. It is basically a long electric motor when accelerating and cruising, and a generator when decelerating. The 267 mph system in Shanghai has been running for over five years with 99.97% on time reliability.

Traditional high speed rail has very high annual operating and maintenance costs associated with a system subjected to repeated pounding and vibrations. [Expensive maintenance is required of all steel-on-steel systems to avoid excessive noise and derailments, particularly for systems like the one proposed in Honolulu which includes sharp turns that apply large lateral forces on rails and ties.] The yearly maintenance costs of the proposed DesertXpress would be 3 to 4 times higher than a maglev system and make economic sustainability problematic; e.g., desert sands sticking to oil-lubricated moving train parts, windblown sand damaging steel rails in.

“Steel wheel on steel rail” means wet and slick steel tracks. This is why trains typically do not travel on grades much more than 2%. [This is why Honolulu’s proposed steel on steel rail cannot go to Mililani.] To build a rail line between Las Vegas and Los Angeles through the mountains would require extensive tunneling and/or extensive use of switchbacks for a train to climb through mountainous terrain. Maglev is capable of climbing 10% grades regardless of how slick the surface conditions.

Why build a slow, noisy, polluting, and expensive to maintain train – a throwback to the 19th centurywhen we can build a sustainable high-tech bridge to the 22nd century? [Why indeed do so in Honolulu when a 10-mile HOT lane reversible expressway combined with an extensive Bus Rapid Transit system can offer much shorter travel times to many more people, reach twice as many riders and cost roughly half of the 20 mile steel-on-steel elevated rail?]

America is still trying to figure out what high-speed rail really means. For the record, the internationally recognized standard for high-speed rail is a cruising speed above 150 mph. [The current proposals for U.S. consider speeds around 100 mph.]

The CJR’s Tokaido Shinkansen or “bullet train” that runs between Tokyo and Osaka is not only the world’s oldest high speed rail line, but also the busiest, carrying over 150 million passengers per year. In operation since 1964, the 317-mile Tokaido line now operates 309 trains per day with sustained cruising speeds of 168 mph.

Shinkansen’s stellar safety record is not a happy accident, but the result of excellent civil, electrical and mechanical engineering, painstakingly thorough and dedicated maintenance. [It’s worth repeating that stellar infrastructure performance requires excellent engineering and consistent maintenance. Honolulu’s engineers pass muster, but "consistent maintenance" in not in the local government’s vocabulary.]

In 1987, CJR purchased its fixed facilities from the Japanese government for $38 billion, which netted the government a tidy profit from the 1964 construction costs of about $1 billion. CJR, which is one of six rail operators in Japan, refutes American conventional wisdom that no passenger railroad in the world makes a profit. Each year CJR has a ~10% rate of return. [This is all good but it takes 150 million passengers a year and a steep ticket price to reach this level of financial performance.]

The latest technology CJR will use on their newest Shinkansen line from Tokyo to Nagoya is the MLX01 superconducting magnetic levitation train. Tokyo and Nagoya are approximately the same distance as New York City and Washington, DC. The MLX01 will make the trip in only 40 minutes. CJR is funding this entire line without Japanese government participation. [The Boston to Philadelphia corridor is probably the only place where the U.S. should invest in true high speed rail. The population is so high, the airports are so crowded,and the competition from Amstrak's Acela is so minor that a public-private partnership is also likely.]

Could it be that America’s transportation “experts” are not really experts in HSR or maglev, and are themselves “unproven” in deploying such systems? [Case in point is the transit technology expert panel of Honolulu in which 4 of the 5 members were experts in steel-on-steel technology and the technology vote was 4-1 in favor of steel-on-steel technology!]


UPDATE: On August 24, Robert Samuelson of the Washington Post wrote A Rail Boondoggle, Moving at High Speed, in which he quotes Harvard University economics professor Edward Glaeser's analyses (Is High-Speed Rail a Good Public Investment?) and CATO Institute analysis (A High-Speed Rail Mirage). Also of great interest is the summary of The Guardian of analysis done by Booz Allen about high speed rail proposals for the UK. The conclusion is the article's title: "High-speed rail strategy not so green, report says." When construction energy impacts are factored in, high speed rail proposals become boondoggles.

1 comment:

TrainEnthusiast said...

There in only one application of the Maglev train technology in the world. It is a short 19-mile demonstration segment at Shanghai’s Pudong Airport in China. Rather than extend this demonstration project, China chose to terminate utilization of Maglev and implement its own state of the art high speed rail network similar to what is being used in Europe and other parts of Asia. Maglev is built on an elevated structure even when running “at-grade.” No matter the height of the structure, it requires extraordinarily tight tolerances and structural stiffness, which translate into very short structural spans, very stiff structural decking and columns, and therefore, incredibly high costs. The world’s only Maglev technology supplier (based in Germany) has disbanded its development program completely. Germany has dropped all Maglev projects due to uncompetitive high costs in favor of more efficient high speed rail. Operations and maintenance costs of Maglev are virtually unknown due to lack of manufacturing, servicing, etc. There are no existing U.S. safety standards for Maglev technology. Therefore, the certification process for use in the U.S. would take many years.