Rail systems can indeed be efficient if they are heavily utilized. Alas, only in cities with several million of densely distributed population the utilization of rail is high enough throughout the day. Those systems experience crash loads in the peak hours and heavy loads during most of the off peak hours. As a result energy per passenger mile is low and efficiency is high. Many of them in Canada, France, Japan, Taiwan or the United Kingdom are powered by electricity from nuclear or hydroelectric plants, so their carbon footprint is minimal.
However, in small population cities like Honolulu, a rail system may see some heavy utilization for two to four hours per day and the rest of the time it runs with a light load of passengers (and sometimes nearly empty) which leads to a very poor overall energy efficiency. Worse yet, its electricity come from diesel and coal, so the carbon footprint is very large.
The same could be said about buses, but buses do not have stations with lights, elevators, escalators, ticket machines, etc. and the security and other required attendants. Buses can be propelled by clean energy, e.g., fuel cells. There are several such buses in demonstration service and of course there are many hybrid buses on the streets of Honolulu already. Most buses in the city of Tacoma are LNG, or liquefied natural gas which burns much cleaner than liquid fossil fuels and is relatively abundant.
However, the comparison of rail to buses is baseless. Buses do fine without rail, as TheBus in Honolulu demonstrates. But rail is useless without buses. Honolulu's proposed system has 20 stations and that's it. Honolulu has thousands of activity points and hundreds of thousands or residences. Its proposed rail has twenty stations. The disconnect is obvious and only buses and cars can bridge the huge gaps between where the rail goes and where the people go. (That's one of several reasons why rail does not reduce traffic congestion.)
Except for nuclear, there are no clean energy power plants producing power for rail systems and this is unlikely to change any time soon since existing power plants have very long useful lives. So the present and long term (~20 year) conclusion is that rail systems in smaller cities (~2 million or less)
- have a large carbon footprint,
- are heavily dependent on fossil fuels for their electricity, and
- consume a lot of energy per passenger.
What’s the outlook for cars? Fortunately we do not have to make any guesses. The outlook for the U.S. car fleet is already present in Asia and Europe.
Compared to the oil crises of the 20th century which propelled the Japanese auto industry to international prominence, this time there is better news because U.S. auto manufacturers won’t be left out. On the contrary, their EU and Asia divisions are manufacturing remarkable cars. (Note that all the discussion herein is for vehicles being sold out of dealer showrooms, not for concept cars.)
Ford Fiesta and Mazda 2 are jointly developed small cars of the size of a BMW Mini, a popular small vehicle on Oahu. The 1.6 liter diesel engine of the Fiesta is capable of taking it to a top speed of 120 mph and provides an average fuel efficiency of 56 mpg, almost twice of today’s 1.6 liter gasoline powered Mini. The similar Mazda 2 was chosen the 2008 World Car of the Year.
Ford also offers the C-Max a 5 or 7 passenger car in the compact category with a 58 cubic feet cargo ability with the rear seats folded. Both gas and diesel engines are available. The gas engine delivers an average of 32 mpg whereas the diesel engine delivers 41 mpg.
Ford Kuga is a stylish crossover vehicle which is sold with only one engine option: A two liter diesel which delivers an average of 37 mpg and needs refueling every 550 miles. Ford plans to bring this vehicle in the U.S., but apparently the average U.S. Ford customer is not as sensitive to fuel price and pollution as their EU counterpart: A 2.5 liter gasoline engine is planned for it. Or perhaps a 2 liter hybrid version. The latter may come close to the efficiency of the EU version (but with a more complex and expensive power plant combination.)
GM will introduce the Opel Corsa to the U.S., a car slightly smaller than the VW Rabbit. The Corsa has been sold in Europe and elsewhere for over 10 years and there are eight different motors for it, depending on version and market. Of great interest is the version presented at the 2007 Frankfurt Auto Show which combined a 1.3 turbo diesel engine with a hybrid motor to deliver a 63 mpg fuel efficiency and good performance.
Then of course there are competing offerings from Toyota (the 3-cylinder iQ gets 56 mpg), or the fully-electric Mitsubishi MiEV (costs about $25,000 and has an 80 mile range.)
Honda already imports the Fit to the U.S. The 2009 version delivers 27 mpg in the city for under $15,000. In various automotive magazine tests, the Fit delivered a frugal 35 mpg overall. The 2009 Toyota Prius is still formidable at 48 mpg in the city. Honda’s answer to that is the 40 mpg in the city Civic hybrid.
Speaking of hybrids, statistics of the U.S. Department of Energy show that their sales took off in 2005. Sales started at 9,000 units in 2000 and grew quickly to 84,000 by 2004. But in the last three years their sales have exploded: 210,000 units in 2005, 253,000 in 2006 and 352,000 in 2007. It is likely that a half million units per year sold in the U.S. will be reached by 2010 despite softening fuel prices and weak overall economy.
In conclusion, if people are concerned about carbon footprint and dependency to fossil fuels, then looking to return to 19th century commuting in trains is not the answer. Been there done that. Too limited, too crowded, too inconvenient.Modern society evolved out of it.
Technology is providing the solutions to the problems. This is the same technology that in one person's life time took us from the 1920 Ford Model T with its top speed of 35 mph and a fuel economy of 20 mpg to, say, the 2009 Ford Escape Hybrid with its top speed of over 100 mph and fuel economy of 34 mpg in the city.
In the next 20 years there will be an abundant selection of vehicles that are two or three times more efficient than today’s average offerings. This reduces fossil fuel dependency substantially. Combined with less travel, more telecommuting and wider use of renewable energy and natural gas, dependency on oil can be reduced dramatically.
In the next 20 years, scientific knowledge may overcome unfounded fears and allow us to replace oil fueled power plants with nuclear ones, for the benefit of our planet. This is a win-win-win proposition for the U.S.: Less dependency on oil imports, green house gas free electricity generation, domestic high-technology infrastructure development boosts the local and national economy.
If that occurs, then fully electric and truly non-polluting vehicles are possible. There are several fully electric cars available, the Tesla Roadster being the most spectacular U.S. electric vehicle in small production. Affordable and clean electricity is needed for mass production of electric vehicles and convenient fueling at Electron Stations which today we call Gas Stations. Or at park-and-plug parking stalls: It is not hard to imagine a parking meter with an electric outlet, isn’t it?
Better Place offers a concept of an all-electric car future. Hawaii's Governor Lingle has been briefed. California signed up last week.
No comments:
Post a Comment