Wednesday, October 12, 2011

International Award on Sustainability Research

I am very pleased to have received this international award along with my research collaborators.

Out of 2,000 scientific papers submitted for the 2011 international conference of the World Road Association (also known as PIARC), 620 were selected to be presented at the conference and 8 received awards. One of the 8 was ours!

Lambros Mitropoulos is one of my doctorate students; he will be graduating at the end of 2011. Professor Teti Nathanail of Thessaly University spent summers 2009 and 2010 at UH-Manoa.
Another paper with Dr. Nathanail was published the U.S. Transportation Research Board: "Risk Assessment for the Transportation of Hazardous Materials through Tunnels." (Transportation Research Record, No. 2162: 98-106, 2010.)


The full paper is titled: LIFE CYCLE ASSESSMENT THROUGH A COMPREHENSIVE SUSTAINABILITY FRAMEWORK: A CASE STUDY OF URBAN TRANSPORTATION VEHICLES

Monday, October 10, 2011

Honolulu Heavy Rail Is an Energy Black Hole

Energy and Honolulu rail is an angle that I did not have time to look at in detail, until last week when my students did some energy analysis of Honolulu’s proposed rail. They discovered this June 2008 article by Sean Hao: Rail's use of energy subject of debate in the Honolulu Advertiser.

Of note is that the rail will consume about 20 MW of energy which is about 20% of the capacity of HECO’s new palm oil plant. Unfortunately peak rail travel coincides with peak demand for electricity around 6 PM, which means that rail will stress HECO’s generators.

Now if you believe the city’s numbers which are based on incredible ridership projections and substantial bus route eliminations, Table 4-21 of the Final EIS shows that the rail project will save 2,440 million British thermal units (BTU) of energy each day, or about 610,000 million BTU per year.

Hao correctly added that: “Any evaluation of the energy savings generated by rail also needs to consider the massive amount of energy required during construction. For example, construction of the fixed guideway will require between 3.7 trillion and 4.9 trillion BTU of energy, according to Parsons Brinckerhoff.”

This quote reveals two startling facts:

First the unnamed Parsons Brinkerhoff source clearly lied to Hao by stating roughly half the correct amount of BTU. The 2008 Draft EIS, Table 4-34 on page 4-159, shows that the rail’s Airport alignment will require 7,480,000 MBTU. That’s 7.5 trillion BTU, not 3.7 trillion.

Second, by dividing 7,480,000 by 610,000 we get 12.2. That’s how many years it will take to make up the construction energy loss by the purported energy savings. But in reality these 12 years are an understatement because Hawaii's vehicle fleet is much smaller in engine size (more economical) than mainland fleet and the adoption of hybrid and electric vehicles is vastly bigger on Oahu. In addition the national averages are based on low vehicle occupancy, whereas Oahu has among the highest transit and carpooling rates, so BTU per passenger mile is way lower than mainland.

The City's BTU savings estimate may be wrong by a factor of 3 or larger, so it will take so many years for rail to "make up" its construction energy waste that before break-even is reached, rail will need multiple component replacements, repairs and refurbishments. So an energy black hole it is!

On the other hand, our 2008 simulation estimates using the DEIS traffic numbers show that rail is a net energy loser without even counting the huge energy consumption during construction. In comparison, a properly designed and operated HOT lane system will save energy (motor fuel and oil.)

Fuel Consumption for One Peak Hour (in US gallons)
Change from Base of ~97,000 gallons

ALTERNATIVE

Motor Fuel

Motor Fuel plus Diesel at HECO for Rail

Rail: 6.5% traffic reduction

-2.6%

-0.3%

Rail: 3.25% traffic reduction

-0.4%

1.9%

HOT Lanes and Four
Underpasses

-40.5%

-40.5%

Tuesday, October 4, 2011

Volt, Prius or CRV? Numbers Make the Choice Obvious.

The fully worded question is: How does the extended-range GM Volt Electric Vehicle compare with Toyota’s fourth generation hybrid Prius and Honda’s popular compact SUV the CRV?

I was not inclined to immediately dismiss the GM Volt as an expensive failure, (e.g., Chevy Volt is Automotive Version of Solyndra) and the October 2011 issue of Consumer Reports (CR) encouraged me to look into this different car.

Although CR did not award the Volt its coveted Recommended status, some of its critique is excellent for a compact car with unconventional technology:
  • “Responsive steering makes the Volt feel fairly nimble in turns.”
  • “The Volt was secure at its handling limits.”
  • “The ride feels solid and firm yet compliant.”
  • “Braking distance was very good overall.” And this one:
  • “The Volt is amazingly inexpensive to run on short trips.”
The last one has twice the significance for Honolulu. Because of the compactness of the land, we make many more short trips in Honolulu than motorists in spread out mainland cities with about one million population. But our electricity cost is roughly three times higher than mainland US.

Does a Volt make a good choice? We can arrive at an answer by comparing it to two popular choices in Honolulu like the Toyota Prius and the Honda CRV. (1)

CR compared their $43,000 Volt to a $26,500 Toyota Prius and a $18,500 Hyundai Elantra. It excluded the purchase cost. Based on gasoline and kilowatt-hour costs, CR found that Volt is cheapest for 30 mile trips, is similar to hybrids for 70 mile trips, and loses its advantage as trips get longer.

To get to a better answer I used both Honolulu and US mainland prices for fuel and electricity, 30 mile and 70 mile trips, an 8 year/100,000 mile horizon (that’s when Volt's battery warranty expires), US and Hawaii tax incentives, and resale value at the end of 8 years. One component that remains uncertain in these half life-cycle cost estimations is maintenance.

In 8 years, Prius and CRV will make extensive use of their internal combustion engine. They would need about 20 oil changes and a few component replacements which should cost $1,000 to $2,000. Also both of them may require transmission repairs which are not applicable to the Volt. Both Volt and Prius have regenerative braking so they may not need brake pads before 100,000 miles but the CRV will likely need two sets of front brake pads and rotor resurfacing. Brake costs for the CRV for 8 years and 100,000 miles may come close to $1,000. Maintenance and repairs play a role in life cycle cost.

Insurance, finance charges, license, annual registration and safety inspections were not included because they are similar for all three cars for the same driver at a given location, e.g., registration and insurance rates vary widely by state. (As of this writing I am not certain that Volt is subject to Smog Test where applicable.) These costs do not affect the bottom line choice.

Discounted parking and other perks for EVs were not included. Currently EV perks in Hawaii are as follows:
  • Special electric vehicle license plates.
  • Free parking at State and County facilities including meters.
  • Free parking at UH parking structure.
  • Exemptions from high occupancy vehicle lanes.
For some users these perks may amount to more than $1,000 per year, at taxpayer expense (e.g., a stall occupied by an EV cannot be occupied by a fee-paying vehicle, so EV user gains amount X and taxpayer loses parking revenue X.)

A big unknown is the durability and replacement cost of Volt's battery. GM's warranty is for 8 years and 100,000 miles. Note that California requires 10 years/150,000 miles. As a result, Volt buyers will not receive California's $5,000 incentive. This limitation is not applicable to Hawaii.

The Prius' entire hybrid system (which includes the hybrid battery pack) is warranted for 8 years/100,000 miles. A battery replacement with a new one at a dealership costs roughly $4,000. There are lower cost options such as Re-Involt Technologies in North Carolina: “...batteries for the Prius 2001-2010 are $1675.00 plus shipping and your old battery.”

The table above details my estimates for the usage of these three cars in Honolulu using monthly gasoline prices and my own electricity bills to determine the actual bottom line cost of HECO’s price to the household. This price was then reduced by 6 cents, a discount that HECO offers if the EV is charged at home overnight. I assumed that this preferential treatment will last for the 8 year horizon in my analysis. HECO installation of a appropriate meter, purchase and installation of a 240V charger add over $2,500. There is a $750 incentive for the 240V charger.

Despite Honolulu’s expensive electricity, use of the Volt exclusively for short trips is much cheaper than its competitors. Honolulu Volt owner’s running cost comes to $595; the same cost at an average U.S. mainland city is $283.

Then I used a mix of 5 trips of 30 miles each and 2 trips of 70 miles each, per week, to arrive at my bottom line estimates. With such usage, the Volt, Prius and CRV will cost $1,150, $992 and $2,044, respectively, to run for 12,500 miles per year in Honolulu, and $698, $843 and $1,738, respectively, to run for 12,500 miles per year at an average mainland city.

Volt is the cheapest to operate on short and medium trips on the mainland, and Prius is the cheapest to operate on short and medium trips in Honolulu; about $150 cheaper than the Volt and more than $1,000 cheaper than the CRV. HECO’s high price per kilowatt-hour takes a toll on Volt.

Using Edmunds.com’s True Market Value(2), a flat documentation fee, 4.5% tax (GET in Hawaii, 8% sales tax on mainland) and applicable incentives, I arrived at the following cost estimates:

CRV has a purchase price of about $26,000 and Prius is about $29,500. Volt is $31,500 after $7,500 in federal incentives and $4,500 in Hawaii incentives have been deducted. These prices include destination charges and regional adjustments of about $750 (an add-on to car cost in Hawaii.) Due to lower state incentives and higher sales taxes, the Volt is about $3,000 more expensive on the US mainland. The other two are about the same as in Hawaii.

The bottom half of the table above is the bottom line. I arrived there by estimating today’s resale value of the three vehicles for 8 years in the future, using Edmunds.com. Both CRV and Prius have an over 10 year history on the market so their used car value is reliable. There are no estimates for the year-old Volt, so I assumed that it will have a resale value equal to the Prius.

Bottom line is that in Honolulu over 8 years and 100,000 miles the CRV will have a total cost of $33,775, the Prius will cost $27,888 and Volt comes in the middle with a total cost of $31,080. Mainland estimates are in the same order with only the CRV costing about $1,500 less than Hawaii due to the cheaper gasoline price.

With analysis like this, one can run “what if” scenarios quickly. What if average gasoline price for the next 8 years increases by a whopping 50% over the 18-month average I used? This would take Honolulu’s average gas price to $5.43 per gallon. In this case, the bottom line for the three cars will be as follows: the CRV will have a total cost of $41,963, the Prius will cost $31,861 and Volt would come in the middle at $32,589 (... plus registration, insurance, maintenance, parking and other applicable fees ... and the charger for the Volt.)

But over 75% of Oahu’s electricity comes from oil and this is not likely to change by much in the next 8 years. So if gasoline goes up by 50%, then electricity will go up by at least 30%. This increases Volt’s bottom line cost to $34,394. So even with very expensive gasoline Prius is cheaper than the Volt by $2,500.

All estimates indicate that Volt is a losing proposition to its buyer and it is certainly a losing proposition to the taxpayer because tax incentives of $12,000 are involved in the sale of every Volt in Hawaii. A Volt buyer could have gotten a much lower priced hybrid car and $12,000 of taxpayer monies could have gone to far more worthy causes. Parking incentives and the tax credit for the home charger may also add several thousand dollars of taxpayer subsidies.

Even the most extreme of “green” advocates cannot argue that the environmental benefits of each Volt over a Prius are worth $10,000 to $20,000 depending on location and taxpayer subsidized perks.

The Volt is a huge “miss” for GM, a manufacturer that could least afford a costly “miss,” and the total financial blunder from this vehicle is attributable to misguided policies (of the familiar liberal type.) Billions more will be spent on mandated EV chargers at parking lots, and on government fleet purchases of Volts.

Postcripts: (1) What about the all electric Nissan Leaf? Look for my updated coverage that will include the Leaf once reliable data become available, most likely early next year. (2) Edmunds.com is a reliable publication that I also used in my doctorate dissertation to determine car values in the late 1980s. It includes a “True Cost to Own” estimator that takes into account most of the life-cycle categories mentioned in my article. It has no estimates for Leaf and Volt.

Monday, October 3, 2011

Where Are the Rail Construction Crews?

Gone racing!

A friend sent me several pictures and this note: "I was stuck in traffic for almost an hour at 12 noon in Waipahu on Farrington Highway on Friday going to lunch and back with the staff. Took a picture of the construction area -- not a soul was there. What a charade."



I have already covered the effects of debilitating construction that will be caused by the rail project. What we are observing now is pre-construction for soils testing and relocation of utilities. The nightmare will begin once elevated construction begins. But where are the crews?

As I said, gone racing. See for yourself:

Sunday, October 2, 2011

News Behind the News: Honolulu Rail on the Ropes

An update of the Honolulu Rail Project, and the Rail Lawsuit by UH professors Randy Roth (Law School) and Panos Prevedouros (College of Engineering.)

Friday, September 30, 2011

Rail Construction Delays Will Take Decades to Counterbalance

One thing that the public has not understood and the City has never explained or quantified is this: The impact of construction on daily traffic flow for 6 to 12 years.


Let's say that all attempts to stop the proposed heavy rail for Honolulu fail and the rail as shown in the picture above is going to full implementation. There will be 21 approximately football sized stations 40 ft. or higher in the air.

This will require extensive lane closures and in make cases long term full road closures. In addition to the stations there will be 20 miles of guideways in the middle of major arterial streets such as Farrington Hwy., Kam Hwy., Dillingham Blvd., Queen St. Their traffic will have to divert to other (already congested) parallel roads. Congestion will be paralyzing for a decade.


The congestion due to rail construction will be so bad in total, that rail's tiny traffic relief after it opens won't balance it out for over 50 years.

Let's work out a quick and rough estimate.
  • Call "A" the amount of traffic congestion today from the general Ewa/Makakilo/Kapolei area to town.
  • Say rail will take 10 years to be built and congestion on that corridor will be 50% worse on the average. So rail will make 5A of additional congestion.
  • Now let's say that rail will reduce congestion by a (very large) 10%, so every year thereafter rail will be saving the same folks 0.1A of congestion. (The real traffic congestion reduction will be 2% to 5% at best.)
  • How many years will it take to balance the additional 5A of congestion they suffered while rail was built?
  • 5A divided by 0.1A gives 50
  • 50 years
  • Two generations with zero benefit.
As I have mentioned to folks in Kapolei: The best day for their to Honolulu ... was yesterday. Rail or not, congestion will get worse. (That is, until real congestion solutions are implemented.)

Monday, September 19, 2011

Jade Moon Wants Louder Support for Her Train to Ruin

Jade used her MidWeek column, plenty of emotion and wrong information to paint a favorable picture for Honolulu’s proposed elevated rail which she wants and supports. (Read it here.)

Jade issued a call to action because the pro-railers are not being heard. “I think it’s time for rail supporters to come back out and make a little noise. Make yourselves heard again.”

At the same time, the City shamelessly uses tax monies to produce, print and mail hundreds of thousands of gloss fliers to households monthly, it produces TV programs including a regular spot on O’lelo, it gives rail propaganda shows with food and music at high schools and colleges, and Inouye, mayor or HART have at least one press release or pro-rail event every week.

Moreover, the Star-Advertiser routinely rejects anti-rail letters and MidWeek has refused my multiple offers to print my articles. Councilman Tom Berg is being shadowed by Go-Rail-Go every time he arranges a townhall meeting with rail on the agenda. Pro-rail unions flooded the Land Use Commission hearings on Ho’opili recently. But none of this is enough for Jade. She wants to make sure that anti-rail voices are swamped.

“Our future demands that we protect our environment, that we have viable transportation choices. Clean mass transit must be one of the options on the menu” she claims.

The energy required just to build the foundations, columns, structures and trains involved is enough to give an energy consumption and pollution stroke to anyone willing to quantify it. National statistics clearly show that hybrid cars are less energy demanding and polluting than heavy rail, and 4-cylinder cars are not far behind the hybrids. That’s by mainland standards which include substantial nuclear and hydro (clean) power and less than 3% oil. In contrast, over 90% of Oahu’s electricity comes from oil with little end in sight. It is the dirtiest electricity in the U.S.

Remember that a parked car does not pollute. A train runs less than half full most the time. Plus station lights, elevators, escalators, ticket machines, controllers, air-conditioners are on all the time. What a waste of resources!

Here is a green transportation alternative for Jade: Telecommuting. Since the turn of the millennium, more Americans telecommute than take trains. Also two years before the 2008 “rail referendum” on Oahu there was another one about bikeways and a whopping 72% were in favor. What did Mufi I (Hannemann) and Mufi II (Carlisle) do about bikeways? Where is Jade’s outrage for this green mode? Perhaps bikes are ignored because they aren’t HECO customers.

“It would revitalize the construction industry…” No, it’ll keep some of them busy for a few years. Then what? Megaprojects are not sustainable. All they do is create “bubbles” of temporary growth. This point is too myopic to discuss any further.

“…stimulate business and economic development and provide opportunities for employment.” Maybe, but correctly spent, six billion dollars can go way further for Oahu. Here is a suggestion: A $6 Billion Plan for Hawaii's Long-term Prosperity.

“Listen to the voices of the people who are tired of traffic hell.” I’d agree that by local standards the Kapolei to town commute is what Jade calls “traffic hell.” But Oahu’s congestion ranking is between 49 and 52 worse in the US according to the Texas Transportation Institute congestion index estimations: Mobility Data for Honolulu (2004 to 2009.)

“My biggest fear for rail is that it will somehow stumble into a legal no man’s land.” Jade got this right. Even if the Cayetano, et al. suit fails, even if the Bombardier complaints fail, there will be dozens of eminent domain and other suits. Big projects typically get stuck. One heiau in Halawa did it for H-3 Freeway. How’s several football field sized stations in Waipahu, Kalihi, Kakaako 40 ft. up in the air?

Rail for Oahu has been, is and will be a losing proposition. Manini traffic relief, huge visual and environmental impact, colossal cost to implement, and ridiculous traffic and court tie-ups once real construction begins.

Wednesday, September 14, 2011

Hawaii Solar Technology Choice

Q: Will the consumer gain or lose?
A: Lose big if a proposal gets approval

The technology battle is between Concentrated Solar Panel (CSP) and Photo-voltaic (PV). Here are the facts:

Why should Hawaii pay more for electricity generated from CSP than it does from PV? Hawaii’s leaders have proposed that HECO pay CSP developers up to 60% more than it pays PV developers for the same power. Even a modest size CSP facility will cost Hawaii 10’s of millions of dollars more in tax credits and electricity purchases. CSP (also known as Solar Thermal) is the most expensive of all energy options, as shown in the figure below. Choosing an obvious and unnecessary waste of money.


PV wins the Solar Technology Battle: Government and industry analysts say that CSP (also known as “solar thermal” technology) is losing the solar energy cost battle and is doomed (1,2.) The project developers are cancelling numerous CSP projects or converting them to PV (3.)

Hawaii’s Experience with CSP is even worse
. Hawaii’s first CSP facility cost approximately $20 million dollars to build and has a capacity of 100 kW (4,5,6.) The cost to build that CSP facility is approximately $200/watt while PV is less than $7/watt. Actual electrical output from the facility has not been made public.


Outrageous cost!
HECO buys renewable energy produced by geothermal, wind, PV, and biomass local suppliers at 12 to 22 cents per KWh. With the proposed CSP rate, HECO will be forced to buy solar energy at 31.6 cents per KWh. Such discriminatory favoritism is unjustified and insulting to electric power customers. For reference, the average price of electricity sold to mainland households is 11 cents per KWh. HECO’s rate is approximately three (3) times higher.
Bottom Line: Hawaii should not subsidize an expensive and unproven CSP technology when proven and less expensive PV options readily exist.

Call to Action:
The Governor and the PUC are preparing to approve a “highway robbery” deal with Sopogy for a multi-million dollar CSP deployment at Kalaeloa on Oahu. This deployment must not be approved. Call the Governor and the PUC and ask them to step away from this very costly proposal.


Note: Sent to Governor, Lt. Governor, the Public Utilities Commission and all Hawaii Legislators on Sept. 13, 2011.

Tuesday, September 13, 2011

Internet in China. Not Much is Accessible.

I spent nearly two weeks in five cities in China, Shanghai, Nanjing, Harbin, Chanchung and Beijing in August. It was a great tour of China's developing might and physical beauty which I describe elsewhere. One of the low spots was Internet access. Here is a pictorial testament of my experience.
No access to Blogger, Facebook, YouTube, Twitter, Vimeo ...

Monday, September 12, 2011

Taxis Are Flexible and High Tech Public Transportation

Cities rely on taxis to serve business people, tourists, the handicapped, the auto-less and people who cannot drive, and all those with urgent and important trips. In Honolulu for example, about one fifth of a taxi's night customers are restaurant, bar and medical facility workers many of whom can't afford high parking fees or do not drive -- given that bus routes shut down by 8 or 9 pm.

Throughout the world, taxis are common carriers, which means that they serve everyone without preference or discrimination. They typically provide 24x7 service, and improve public safety by transporting intoxicated drivers home. Taxis provide essential intermodal connections at airports, harbors, rail and mass transit stations.


The taxi is a privately owned and operated public transportation service.
As an industry, taxis provide thousands of jobs in an urban area for drivers, dispatchers, managers and other vehicle-related jobs. A typical taxi “clocks” approximately 32,500 miles per year in Honolulu and close to 47,000 miles in New York City: A taxi vehicle is used roughly three times more than the average private vehicle in Honolulu and NYC. This in turn generates more business for others: Gas stations, service stations, car repair shops and auto sellers. And lots of fees and taxes paid to government at all levels.

The taxi industry tends to be heavily regulated which may be tolerable during positive economic times but is burdensome during economic downturns and fuel crises. The cyclically revised tariffs per mile and minute do not take into account fluctuations either in the prices of vehicles and fuels or in the value of time. Other disadvantages of the taxi industry are the constant exposure to traffic congestion and traffic accident risk.

Managing a fleet of hundreds of taxis over thousands of miles of a large city network is a daunting task. Done wrong, there can be tremendous waste of driver time and fuel on empty hauls, or long waits at the wrong location. This is where Intelligent Transportation Systems (ITS) come in with the combination of computerized optimization, automated vehicle location (AVL), global positioning systems (GPS), and fast mobile network based communications between fleet and dispatch center. Fuel savings and more revenue trips per shift pay for the technology and improve the taxi operator’s bottom line.

With an integrated system, the right customer is paired with the right available taxi within seconds resulting in superior customer service and minimized down times and wasted fuel. On the aggregate, thousands of taxis (e.g., Honolulu has nearly 2,000) conducting optimal trips can save a lot of congestion and emissions for the whole city.

Mentor Engineering of Canada recently installed its IntelliFleet ITS system for taxis to Honolulu’s oldest taxi company Charley’s Taxi which manages over 200 cabs on Oahu. While Oahu has several ITS components, they tend to operate in bits-and-pieces by city or state departments. The Charley’s Taxi/Mentor Engineering/Sprint/Verizon system is a fully integrated one with additional features for safety and convenience of both the driver and the passengers. A news story by Hawaii News Now can be seen here.



Taxi is arguably the best mode for urban transportation and this is evidenced by its worldwide success. It is car-based so it is fast, convenient, private, clean, and provides door-to-door service. The customer is free to be productive during the trip, and at the end of the trip there is no need to look for and pay for parking.

Indeed, taxi is one of the most basic modes of urban transportation which along with taxis include car, car-pool or van-pool, bus, walk, bicycle, moped or motorcycle, and telecommuting. Some cities have express bus service or bus rapid transit (BRT), light or heavy rail, jitneys, ferries, funiculars and other specialized modes. Taxi service is public transportation and is an essential mode of metropolitan transportation throughout the world.

Could taxis solve the Ewa plains to town congestion problem on Oahu? This is only a half-serious question, but given how government wastes money, it’s worth looking into. Federal and local government wasted $6 Million on TheBoat. It carried roughly 300 people per day for about two (2) years. The same subsidy to 100 taxis would have carried the same people for 6.5 years!

Thursday, September 1, 2011

Ten Reasons Why Nuclear Energy Is Necessary For Another 50-Years

Today I attended an interesting presentation on the merits of ocean thermal energy conversion (OTEC) and fusion with heavy ions (HIF). Fusion is the “miracle” no-radiation, no noxious waste energy concept that for the past 50 years it’s been “20-years in the future.” There are no fusion power plants in existence, in part because of the giant size they require, and the giant budget that comes with it: $50 Billion for one installation which, in turn, would be enough to supply all of California with fuels and electricity. But $50 Billion for the first-of-its-kind installation is a proposition that no private company or politician has put forth.

What we have available today is the much more scalable and affordable fission process of nuclear reactors. So I summarized below ten key reasons why nuclear energy is necessary for areas that anticipate growth in one million people increments. Many cities in Asia and Africa fit this growth profile.

1) Growth: World population was 3 Billion in 1960, 6 Billion in 1999 and expected to be 9 Billion in 2046. Population growth and improving standard of living globally demand increasing amounts of energy. Energy production must roughly double in the next 30 years to accommodate demand.

2) Fossil fuel depletion: Fossil fuels are being depleted, are not renewable and carbon taxes or pollution limits incentivize low carbon power production alternatives, one of which is nuclear.

3) Plant aging: The post WWII rapid growth of 1st world countries was facilitated in large part by electric power plants of various types and sizes. Many of them are past 50 years of age and need replacement.

4) China alone is growing very fast and a major bottleneck of its growth may become the supply of electric power. Mopeds are electric in its large cities and BYD and CODA are selling full-featured electric vehicles.*

5) Uranium as a fuel has advantages: It is relatively abundant, it does not cost much, not a lot of it is needed to fuel nuclear reactors, and supply comes from stable countries such as Australia and Canada. It is only mildly radioactive and its alpha radiation does not penetrate the skin. Uranium metal is commonly handled with gloves as a sufficient precaution.

6) Modern nuclear power plants provide large amount of power, typically over 1 GW which is 1,000 megawatts. One 1.5 GW plant can cover the needs of a 1st world city of about one million population. Its impact on land and other earth resources is very small compared to many other clean energy sources such as photovoltaic and wind.

7) Familiarity: By 2010 there were 440 nuclear power plants in 31 countries supplying about 15% of the world electric power. Also, there are hundreds of naval vessels with compact nuclear reactors.

8) Vinod Koshla told The Economist that Earth is on an unsustainable energy trajectory and the development of affordable new energy is essential for the billions of peoples on the planet and particularly in fast growing China, India, Indonesia and Nigeria.** Until a feasible and affordable breakthrough is achieved in the energy field, nuclear energy is a major option for large populations because of its cost per MW, safety and near zero carbon footprint.

9) Normal safety: Current nuclear plant designs have many more safety features than the 1950s-era power plants that exhibited critical problems in Pennsylvania, Russia and Japan. Here is an example of a late 1980s nuclear reactor that shut down recently because it auto-detected some equipment failure.

10) Catastrophe scenario: The Fukushima, Japan Daiischi nuclear power plant failure is a great example of resilience. Whereas nature’s force and infrastructure failures in the 9 R earthquake on March 11, 2011 (Tōhoku earthquake) claimed over 30,000 lives, this major nuclear power plant accident had no fatalities. The plant designed with 1950s technology and built for an 8 R earthquake actually withstood an earthquake that was 10 times stronger. Flood water from the powerful tsunami jumped over the 25 ft. protective sea-walls and drowned the external diesel generators used to circulate water and cool the reactors. Because of the surrounding catastrophe, nobody was able to fix this external power system. After the 8-hour backup batteries ran out, cooling stopped and partial meltdown commenced. The September 1, 2011 press release of TEPCO Power Company reads in part: “By bringing the reactors and spent fuel pools to a stable cooling condition and mitigating the release of radioactive materials, we will make every effort to enable evacuees to return to their homes and for all citizens to be able to secure a sound life.”

Power is the key ingredient for prosperity. Without adequate and affordable power, our life-style, health and well-being cannot be maintained. Power fundamentally affects our basic needs such as water distribution, sanitation, food production and transportation for covering essential needs. Once it is understood that every 750,000 population requires approximately 1,000 MW per day, the production of affordable energy by existing solar and wind technologies appears only on the lists of severely math (and reality) incompetent individuals.

Unfortunately “environmentalists” and self-appointed “public protectors” are most effective in blocking nuclear power plants for communities with the best engineering, strict safety standards and political stability (e.g., Germany, Japan and U.S. locales.) At the same time, gigawatts of nuclear power are shifting to less secure environs, such as developing ex-soviet and ex-communist countries. This may be an unwelcome transfer of risk for the planet as a whole.

Notes
(*) China is one of a few nations with no apparent hesitation for the deployment of nuclear energy. I show a sample collage below. The approximately 10 million population city of Harbin in northern China has two large nuclear reactors as part of the cityscape. They were within a 30 minute walk from my hotel where I took the picture shown below in late August 2011. A week earlier I was sitting on the left side of the bus from Nanjing to Shanghai, a 160 mile trip. I saw and photographed three large nuclear power plants shown at the bottom of the picture; one every 50 miles!

(**) Add the U.S. (~500 million) and the Philippines (~200 million) to those four and their combined population projection for 2100 reaches 4 Billion!


Thursday, August 25, 2011

Another Prediction for What's in Store with Honolulu's Rail

I am optimistic about the outcome of the lawsuit against Honolulu Rail in federal court. There was no such suit against the Silver Line addition to the Washington DC Metro. So the line is now under construction. These two excerpts from a recent article in New Geography are important:

  • While rail might seem like the most obvious solution, it is also by far the most expensive and slowest option. The price tag is staggering, and the rail extension will take years to construct. The better option would have been to make use of the existing roadways, and implement an expansive bus rapid transit system (BRT).
  • The 23 mile extension of the Washington Metro rapid transit system is forecast to cost $6.8 billion dollars; roughly $296 million per mile. The constant scramble to finance the over-budget project has resulted in more than one construction setback.

What's important is that this system is about the same length as Honolulu's, and it is heavy rail like Honolulu's. So despite the fact that its construction is relatively easy (in the middle of an existing toll road) compared to the nightmare of shoehorning elevated stations and guideways in densely populated Honolulu the cost is staggering and it will likely surpass $7 Billion.

Remember that the financial analysis report conducted for Governor Lingle said that the likely cost of Honolulu Rail will be $7.2 Billion.

So when mayor candidate Carlisle promised that he will "get Honolulu's financial house in order" what did he mean? The answer is clear: "Adding several Billions of new debt onto Honolulu's financial house."

I strongly suggest that you read the rest of the article linked above as it presents a most suitable solution for the Dulles connection and for Honolulu: Bus Rapid Transit on HOT lanes. Much better results are a much lower cost.

Wednesday, August 10, 2011

A $6 Billion Plan for Hawaii's Long-term Prosperity

Dr. Martin Wachs recently wrote an important article on public investment for transportation and jobs. (See blog post below.) He observed that Democrats and Republicans, liberals and conservatives, rural and urban elected officials—all seek funding for roads and transit projects in their districts, asserting repeatedly that these expenditures will create jobs. He correctly asserts that construction jobs do not inherently have higher economic impact than other new jobs. Construction may generate construction jobs but it also is a huge cost item in and of itself and puts a lot of stress on city and state budgets. (All states except North Dacota have deficits.) Finally Wachs says that a shovel-ready project in no way assures that it will have long-term net economic benefits.

Given Wachs’ sound, detailed and impartial assessment, you now can make your own decision between Plan A and Plan B for Honolulu, Hawaii.

For about six billion dollars you can choose either A or B defined as follows.

Plan A
  • Mufi Hannemann's 20 mile, 21 station elevated heavy rail with 3 park-and-ride facilities and no power plant. All of it is a taxpayer subsidized project.
Plan B
  • 11 miles of reversible HOT lanes that will improve the Central Oahu-to-town tidal traffic problem by over 30%.
  • 3 Superferry vessels to connect our islands and provide a resiliency backbone when an island is hit by a disaster.
  • A small Hawaii-based international airline with round-trips to Beijing, Shanghai, Osaka, Moscow, Dubai, Singapore, Sao Paolo and Frankfurt, e.g., Aloha Worldwide.
  • A coal power-plant that will reduce Oahu's oil dependency by 15%. All these can be done as incentivized private projects, or public-private partnerships.
Which plan is best for Hawaii's long term economic prosperity and which one is best for short term political pork?

You know that the correct answer is Plan B. Why are about 75% of Hawaii's politicians choosing Plan A? Because they care about themselves, because doing the same thing again and again is less work, and because they are told what to do by special interests (their party, big money supporters, and unions.)